
This file is a preprint published by
the authors. It is thus intented for
personal use only.

The published version of this contribution is available at

• https://ieeexplore.ieee.org/document/9259657

• https://doi.org/10.1109/ICSTCC50638.2020.9259657

https://ieeexplore.ieee.org/document/9259657
https://doi.org/10.1109/ICSTCC50638.2020.9259657


“Automatic Control Knowledge Repository” – A

Computational Approach for Simpler and More Robust

Reproducibility of Results in Control Theory

Carsten Knoll1,* and Robert Heedt1

1Institute of Control Theory, Dresden University of Technology
*Corresponding author: <firstname>.<lastname>@tu-dresden.de

2020

Abstract

As many other disciplines, control theory to some
degree suffers from a reproducibility crisis. In par-
ticular, since computational methods like simula-
tion, numeric approximation or computer algebra
play an important role, the reproducibility of re-
sults relies on implementation details, which are
typically out of scope for written papers. While
some publications do reference the source code of
the respective software, this is by far not standard
in industry and academia. Additionally, having
access to the source code does not imply repro-
ducibility due to dependency issues w. r. t. hard-
ware and software components. This paper pro-
poses a three-component approach to mitigate the
problem: a) an open repository with a suitable
data structure to publish formal problem specifi-
cations and problem solutions (each represented
as source code) along with necessary metadata,
b) a web service that automatically checks the
solution methods against the problem specifica-
tions and auxiliary software for local testing and
c) a peer-oriented process scheme to organize both
the contribution process to that repo and formal
quality assurance. The proposed concept offers
simplified and more robust reproducibility, as well
as increased visibility of published results and a
community-curated set of reference implementa-
tions for control-related methods.

1 Introduction

The scientific advances of the past have been pos-
sible because researchers either added their own
ideas to earlier ones or modified them to draw
different conclusions. This process is mainly fa-
cilitated by the publication of results. For the cre-
ative individual it is necessary to fully understand
published results in their important details like as-

sumptions, reasoning, conclusions – both for im-
proving and for criticizing. Despite omnipresent
digital technology, the main medium for the nec-
essary information transport is still (written) nat-
ural language. Like many other disciplines, sci-
entific communication in control theory typically
is enriched with an ample stock of mathematical
symbols and other formalisms such as block di-
agrams, but natural language still provides the
necessary context.

However, since more and more computational
methods play a crucial role in systems and con-
trol research, it becomes increasingly difficult to
fully understand the essence of many publica-
tions, instead of merely believing their statements
and claims. The difficulties of software in rela-
tion to reproducibility have been recognized early
on [1] and are still a frequent point of discus-
sion [2–6]. Recently, the journal ReScience C [7]
was founded specifically to document examples of
these issues. From the perspective of the authors,
full understanding implies the ability to indepen-
dently reproduce the results from a ground of
common assumptions. For (conventional) mathe-
matical proofs and similar reasoning, natural lan-
guage and written formal symbols therefore still
seem appropriate. On the other hand, for results
that practically cannot be reproduced (i. e. un-
derstood) without using computation (like simu-
lation, numerical linear algebra, or symbolic cal-
culations with computer algebra systems), it ap-
pears naturally that all information that is neces-
sary to reproduce these results should be provided
along with the published description in natural
language. This includes experimental data [8–
10] but also, and arguably more important in our
field, source code for simulations and other types
of calculations [11–17]. Even with the informa-
tion pieces seemingly available in published texts
and source code, interested readers still often run
into road blocks caused by differences in the en-

1

Preprint: Only for personal use.

P
re

p
ri

n
t:

 O
n

ly
 f

o
r 

p
er

so
n

al
 u

se
.



vironment, configuration, or missing documenta-
tion. Recent efforts therefore propose employing
so called Continuous Integration (CI) [18–20], a
concept explained below.

A further problem, which might also dissi-
pate significant research resources, is to manually
search for already existing solutions of the prob-
lem one currently investigates (or similar/related
problems). In other words, the question here
reads: “Are there any published relevant re-
sults in the first place, whose reproduction should
be attempted?” While classical search engines
are doubtlessly helpful, they operate mainly on
the syntactical level (e. g. searching for matching
words) and thus are of limited use. An improve-
ment can be expected by the use of semantic in-
formation as this would allow searching via the
meaning of words instead of their syntactical rep-
resentation as a string of characters. However,
publishing results with such suitable semantic in-
formation requires certain standardization. Addi-
tionally, efficient searching would benefit greatly
from the existence of a central knowledge base.

Assuming that an upcoming publication owes
(part of) its content to computational methods,
the present contribution proposes the following:
a) As a supplement to the usual natural-language-
based publications (typically published as PDF
file), the related source code along with seman-
tic metadata should be published to a central
and open repository with a suitable data struc-
ture. To facilitate this, we further suggest b) a
web service connected to that repository that au-
tomatically checks the solution methods against
the problem specifications and a suite of auxiliary
software for local testing. Finally, we propose c) a
peer-oriented process scheme to organize the con-
tribution process (acceptance/refusal) and formal
quality assurance without the need for a central
authority.

From the viewpoint of the authors, the pro-
posed approach of an ”active knowledge1 repos-
itory“ interconnects innovative technical and so-
cial aspects. However, to have any noteworthy ef-
fect on the above mentioned replication problems
it must gain some significant support and adop-
tion by other researchers and therefore must be
open to ideas, criticism and improvement sugges-
tions by the community from an early stage. Con-
sequently, the presented approach should not be
considered a “final solution” but instead a concep-
tual draft, which might be the point of departure
for further discussion and iterative development.

1The exact meaning of the term ’knowledge‘ is a philo-
sophical issue and thus far beyond the scope of this paper.
In this contribution we mainly refer to instrumental as-
pects of knowledge: The know how suitable to solve certain
specific problems. This kind of knowledge can beneficially
be represented as source code.

The remainder of this paper is structured as fol-
lows: Section 2 summarizes relevant established
technologies and a concept for how to integrate
them. Section 3 proposes the above mentioned
dedicated structure of the repository, while Sec-
tion 4 describes how the repository and the pro-
posed web service can be combined to perform a
contribution as the basic use case of the whole
platform. In Section 5 we briefly comment on
what elements of the concept are already imple-
mented (see also [21]) and in Section 6 answer
some critical questions, which are expected to
arise for the reader.

2 Existing Solutions and In-
tegration Concept

This section briefly summarizes already existing
technologies and techniques. Then these elements
are combined to form an integrated process con-
cept.

2.1 Collaboration via Distributed
Version Control Systems

A key feature for digitally represented informa-
tion is the ability to perform changes (includ-
ing adding or removing content) with very little
effort. However, keeping track of such changes
is a challenge on its own, especially if changes
are asynchronously made by several individuals.
In software engineering, version control systems
(VCS) are used to solve this problem. During the
last decade, decentralized version control systems
(DVCS) and most prominently the software git
have arguably become the de facto standard. A
set of information that is under version control is
called a repository. It typically represents a file
system (directories and files) along with its evo-
lution history. This history is represented by a
collection of incremental snapshots, stored along
with metadata like time stamp or author as a col-
lection of commits. The order relation inside such
a collection is ensured by using a hash tree (also
called Merkle tree [22]) as the data structure: For
each commit, a unique cryptographic hash is cal-
culated and stored as part of the metadata. Addi-
tionally, each commits metadata also contains the
hash code(s) of its parent(s) commit(s), i. e. the
state of the repository to which the incremental
snapshot applies.

This data structure allows for temporary paral-
lelism. Each node (commit) in the tree can have
multiple child nodes (branches). Moreover, each
node can have multiple parent nodes too, which
enables branches to be merged together after a pe-
riod of independent evolution, see Fig. 1. Git pro-

2

Preprint: Only for personal use.

P
re

p
ri

n
t:

 O
n

ly
 f

o
r 

p
er

so
n

al
 u

se
.



vides mechanisms to resolve merge conflicts auto-
matically or manually.

A

B

C

D

E

F

H

I

initial commit

merge commit

newest commit

Figure 1: Schematic visualization of branching
and merging in the distributed version control sys-
tem git.

This technology facilitates a distributed devel-
opment model, which is adopted by many open
source projects: Potential contributors clone the
original repository, i. e. create a local copy of it,
make their own contributions in the form of com-
mits, and turn in a merge request for the original
repository. Typically, some review iterations take
place before the external contribution is merged
into the main repository.

2.2 Automated Tests and Continu-
ous Integration Services

An automated test is a piece of software that
executes other pieces of software and compares
their results to (hardcoded) expected results [23].
Roughly, tests can be subdivided into unit tests,
checking the isolated functioning of a small piece
of software, and black box tests, checking correct
input-output behavior of a larger piece of soft-
ware.

While creating and maintaining such “unpro-
ductive” code takes additional effort, this invest-
ment usually is justified even for projects of mod-
est complexity by the increased efficiency of iden-
tifying unintended behavior (“bugs”). Addition-
ally, automated tests are an important technol-
ogy if heterogeneous execution environments (e. g.
different version of dependency libraries) should
be supported and greatly help to facilitate dis-
tributed software development, see section 2.1.
Due to this surplus value of suitable automated
testing, so called continuous integration services
were developed. Such a service basically monitors
the state of a repository and whenever this state
changes (e. g. by some uploaded commits) it exe-
cutes the set of automated tests that are defined

in the repository itself and reports the result in a
suitable way.

2.3 Integration Concept: “Au-
tomatic Control Knowledge
Repository”

The aforementioned technologies and approaches
do exist and have been applied for years or even
decades. However, to the best of the authors’
knowledge, there does not exist a combination of
these components suitable for the needs of the sci-
entific community and in particular the require-
ments of researchers in the field of automatic con-
trol and systems theory. Thus, the purpose of this
contribution is to propose such a combination and
to expose these ideas to critical comments from
the research community.

As mentioned in the introduction, we propose
in particular

1. to establish a central repository in the
sense of Sec. 2.1, which collects content-
related software (e. g. control theoretic algo-
rithms), organizational software (the auto-
mated tests) and metadata in a formal struc-
ture,

2. to establish a supportive web service for that
repository, providing CI functionality tai-
lored to its structure and to the needs of
systems and control engineering, plus a suite
of software tools to simplify contributions to
that repository e. g. by allowing for local test-
ing,

3. to establish a set of rules that distribute
the decision making about submitted contri-
butions (merge requests) and other mainte-
nance work among the previous active con-
tributors.

We call this concept active knowledge repository
to reflect the fact that it is more than a passive
store of information. Due to the testing carried
out by the web service, it is guaranteed that the
contained software had worked under clearly spec-
ified conditions on computational infrastructure
that is independent from the content contribu-
tor (and thus not prone to undiscovered depen-
dency issues). The term “knowledge repository”
distinguishes from the term “knowledge base” be-
cause it suggests dynamic evolution by contribu-
tions from multiple sources and from the mere
“repository” because it hints that it does not just
contain source code but by the kind and structure
of this source code (and metadata), the repository
content can be regarded as a representation of do-
main specific problem solving knowledge (which
can be transferred to other problems).

3

Preprint: Only for personal use.

P
re

p
ri

n
t:

 O
n

ly
 f

o
r 

p
er

so
n

al
 u

se
.



3 Proposed Repository
Structure

To reproduce a result, it is necessary to reduce
it to a binary yes-no question. Our approach is
based on the observation that the typical (com-
putational) result in control theory can be split
up into a precise description of the problem (or
class of problems), e. g. computing an input tra-
jectory for an equilibrium transition of a state-
space system, and a description of how to solve
these problems. This corresponds to the con-
cept of a unit test, where the problem descrip-
tion is the test case and the solution descrip-
tion is the software to be tested. As a test case
can succeed or fail, a problem solution can either
solve a problem (i. e. calculate the expected re-
sult from the provided data) or fail to do so. To
achieve flexibility and modularity, the repository
structure requires a formal split of contributions
into independent (but linked) entities of different
types, see Fig. 2. The most important entities are
ProblemSpecification and ProblemSolution2.

Figure 2: Relations between the various entities.
All cardinalities are m-to-n with one exception:
Each ProblemSolution is associated with exactly
one EnvironmentSpecification. Note that en-
tities of types ProblemClass and Comment can
also reference entities of their own type. The gear
wheel symbolizes executable code associated with
the entity, other (meta)data is marked by the file
icon.

Note that in this structure a
ProblemSpecification is also given by ex-
ecutable code (indicated by the gear wheel).
The solution entity is expected to repre-
sent the concrete application of zero or more
MethodPackages, which for example contain the
code for solving boundary value problems. Such

2Short forms: Problem and Solution. Other short
forms are similarly self-explaining.

methods might be complex pieces of software,
which are compatible with one or more runtime
EvironmentSpecifications.

In the other direction, to facilitate the discov-
erability of concrete Problem entities, they can be
associated to one or more ProblemClasses, e. g.
“trajectory planning of mechanical systems” or
“trajectory planning of nonlinear state-space sys-
tems”. This entity type can be considered as an
elaborated keyword structure – it does not con-
tain code, but it can be the parent entity of con-
crete Problems as well as other ProblemClasses.
This allows the construction of a taxonomy, i. e. a
semantic categorization of solved (and also open)
problems in the field of systems and control the-
ory. Such a taxonomy could then be a starting
point for an even deeper ontological coverage of
the field [24–27], which, from the perspective of
the authors, promises further advances for ac-
cessibility and reproducibility of control-related
knowledge.

Finally there are entity types for
Documentation (with obvious use) and Comments.
The latter provides a formal possibility for trans-
parent long term communication, such as
improvement suggestions or criticism related to
other entities.

In the repository, each entity is represented by
a directory containing at least one file named
metadata.yml, which must specify some defined3

attributes in the widespread and easy to edit
YAML format. The most important of these at-
tributes is the entity key, which is required to be
a five character string of numbers and capital let-
ters and serves to uniquely identify every entity
in the repository. While most attribute fields are
generic to all entity types, some are specific to
one type such as the field estimated runtime for
a ProblemSolution. Entities that contain source
code obviously need to include the respective files
in their entity directory and reference it in the
metadata, e. g. solution file="solution.py"

for the type ProblemSolution.

While the type for each entity is specified in the
metadata, it is a convention to have a top level di-
rectory structure that maps to the different types.
Inside these top level directories, arbitrary subdi-
rectories can exist, but entities are not allowed to
be nested.

3For details see the README.md file of [28].

4

Preprint: Only for personal use.

P
re

p
ri

n
t:

 O
n

ly
 f

o
r 

p
er

so
n

al
 u

se
.



4 General Architecture and
Process Scheme for Contri-
bution

4.1 Architecture Overview

So far, we only have a passive repository with
a suggested structure (in the following named
ackrep data). However, the main advantage of
the proposed approach should be that a contribu-
tion to the repo will only be merged if it is consis-
tent, i. e. obeys the formal structure, and all (old
and new) ProblemSolutions are able to solve the
related Problems. In other words: all tests must
pass. To check this, we propose a suitable inter-
operation between different software components.
This architecture is visualized in Fig. 3.

Figure 3: Schematic visualization of the proposed
component architecture and their interaction dur-
ing the use case of a contribution (see Sec. 4.3).
The orange elements are associated directly with
a merge request.

The basic component is a software that crawls
through the repository, checks the consistency
of each entity, collects all solutions and related
problems, runs the individual test cases and re-
ports the results. In the current prototype im-
plementation this software is called ackrep core.
It is available with a command line interface,
which allows local testing on personal IT in-
frastructure. However, the relevant test run,
which decides whether a contribution is accept-
able, must take place on independent infrastruc-
ture, i. e. on a server. To comfortably inter-

act with ackrep core on that server, there is a
web interface (ackrep web). To simplify the pro-
cessing and interconnection of the entities, the
metadata from the repository is loaded into a
database. When a solution check is triggered
via the web service, ackrep core creates an ex-
ecutable script from a template. This script
is then executed by a component named code

executor, which is configured according to the
relevant EnvironmentSpecification. The script
passes the ProblemSpecification object to the
ProblemSolution function. Then the script
passes the result into the evaluate solution

function, which finally compares the numeri-
cal/symbolical values of the solution with the ex-
pected ones and decides whether the test was
passed or failed. The result is displayed to the
user via ackrep web along with optional graphi-
cal results that were created by the solution, cf.
Fig. 4.

Obviously, there must be a copy of the
ackrep data on the server. However, the “canon-
ical place to live” for this repo should rather be a
public repository host such as github.com, which
we chose for the prototype. Alternatives would
be e. g. gitlab.com, bitbucket.com or codeberg.org
(non-profit). Such a service provides features for
browsing the repository history and creating a
personal clone, which can evolve into a fork, i. e.
a version of the repository that shares the history
but after a branching point differs from the offi-
cial repo state, e. g. due to additional commits.
For such a fork (which gets its own URL from the
repo host), a potential contributor can then file
a merge request via ackrep web, which triggers
the consistency and solution checking described
above.

4.2 Basic Interaction Scheme –
Constitutional Rules

The merge request described above only has to be
triggered by a potential contributor and the for-
mal quality assurance in the form of consistency
and solution checking takes place automatically.
However, these formal conditions are only neces-
sary but not sufficient. The final decision whether
a contribution should be merged to the official
(i. e. canonical) ackrep data should be made by
humans based on relevance of the contribution
and its scientific and educational value.

The aim to establish peer-based decision mak-
ing in potentially controversial situations while
minimizing both conflict and bureaucratic over-
head poses some social challenges, which are tack-
led in the form of a set of rules called constitution.
The basic idea is that any decision, both regarding
contributions and the constitution itself, should

5

Preprint: Only for personal use.

P
re

p
ri

n
t:

 O
n

ly
 f

o
r 

p
er

so
n

al
 u

se
.



be made consensually by the group of active con-
tributors (see below). For initial simplicity, there
is no other body of decision-making, but as this
group grows, it can and should (consensually) de-
cide to establish a more elaborated structure. To
facilitate this idea, the proposed initial constitu-
tion describes a scalable rejection-minimizing con-
sensus mechanism, see Constitution.md in [28].

From the viewpoint of the authors, rejection
minimization is important for the following rea-
son: In contrast to rules implemented in program
code, which are applied to inanimate and indif-
ferent pieces of information (“data”), the subject
of the constitutional rules are human individuals
with their own interests and preferences. Thus,
these rules are not followed due to natural laws
(as is the case for data processed by software on
a digital device) but due to free decision. If a ma-
jority vote displeases group members, it is likely
they leave and will not contribute anymore.

4.3 Basic Use Case: Making a Con-
tribution

For the sake of understandability, the basic use
case is described as a concrete example. We as-
sume a) that there is a set distinct of individ-
uals {C1, . . . , Cn} who have already contributed
to the repository (“active contributors”) and b)
a prospective contributor P who has developed
a method for trajectory planning of nonlinear
state-space systems and wants to contribute this
method to the ackrep data repository. To ac-
complish this, the following steps are required:

1. P creates a personal fork of ackrep data

and locally installs the supporting software
(ackrep core).

2. P splits up their code into entities according
to the required data structure4, see Sec. 3.

3. With the help of the ackrep command line
tool, P tests locally whether all consistency
and solution checks pass and, if necessary,
fixes all reported formal issues.

4. If no issues are reported, P pushes the
changes to their personal fork.

5. P files a merge request5 via the ackrep.org
web service.

6. The web service verifies that all tests pass.

4The main code will be a MethodPackage while
ProblemSpecification and ProblemSolution can easily be
created based on existing examples

5Often also called pull request, although merge request
better reflects the essence of the concept: the request to
merge new content into the existing repository.

7. C1 . . . Cn get notified about the merge request
and express their opinion about accepting or
rejecting the request and optionally suggest
improvements.

8. After optional review iterations, the (final)
merge request is accepted or refused based
on the constitutional rules. If accepted, it
is part of the official version of ackrep data

and if P /∈ {C1, . . . , Cn} then P becomes Cn+1

and n := n + 1.

It is worth mentioning that the decision makers
C1 . . . Cn, although they could, are not expected
to perform a careful review of the code, which
would clearly be too much effort. However, they
are expected to check that the code is relevant to
the scope of ackrep data and does not contain
obvious errors. If a problem with a contribution
later arises, this could be documented e. g. via the
Comment entity.

5 Results: Current Imple-
mentation Status

The aim of the authors is to develop a practically
working concept, therefore a prototype of the
proposed software ackrep core and ackrep web

has been implemented and is publicly available
as Free Software (GPLv3). However, not all of
the described features are already implemented.
For example, currently there is only one default
Environment, which only supports Python code.
Furthermore, the code executor component in
Fig. 3 is not yet realized as a separate container as
it should be for performance and security reasons
but instead as a plain process run by the web ser-
vice. Nevertheless, the current state of the code
and the running instance at testing.ackrep.org
(see Fig. 4) should be sufficient to illustrate the
proposed concept to a certain degree and to gen-
erate some feedback.

6 Discussion

It seems probable to the authors that the pro-
posed approach raises questions and maybe skep-
ticism. In this section we try to anticipate and
answer some of them.

What is the added value to related publi-
cations? As stated in the introduction, earlier
publications ceased either with a description (and
lamentation) of reproduction hurdles or with an
appeal to publish source code and to connect it
with CI services. While the latter doubtlessly fos-
ters reproducibility, this appeal is based on mere

6

Preprint: Only for personal use.

P
re

p
ri

n
t:

 O
n

ly
 f

o
r 

p
er

so
n

al
 u

se
.



Figure 4: Screenshot of ackrep web. Cur-
rently displayed is the result page of the check

solution command for the acrobot swingup ex-
ample. The relevant metadata is shown along
with the calculation result.

comprehension of the underlying problem. Given
typical resource constraints and incentive struc-
tures in the research system, even strong inten-
tion for reproducibility might be outweighed by
the necessary additional effort to transform the
code into a “presentable” state and to deploy CI.
The proposed approach of the active knowledge
repository, however, might change this balance in
favor of code publication due to the following ex-
pected effects:

1. Basing own work on existing examples re-
duces necessary effort and helps adjust the
own ambition to coding style and quality.

2. Linking to the own code with an
https://ackrep.org/<key>-URL proves
that published code works on independent
infrastructure (=̂ formal quality assurance),
which might provide some extra incentive.

3. Making the own results easily findable on a
platform dedicated to the own research field
increases peer-related visibility much more
than just publishing code among millions of
unrelated projects on a public repository host
(which of course does not conflict with the
proposed approach). Increased visibility is
expected to be a strong extra incentive.

How does an ACKRep-publication re-
late to “classical publications”? Publishing
source code and metadata is supposed to be a sup-
plement to classical publications such as scientific

reports, conference or journal papers. However,
both publication types would benefit from linking
each other: the paper/pdf publication becomes
much easier to reproduce with linked (working)
source code and the published source code be-
comes easier to comprehend with the background
information from a peer reviewed scientific pa-
per. Indirectly, the proposed approach might
also increase the content quality of final publica-
tions because the respective peer reviewers will be
the first beneficiaries of low-barrier reproducibil-
ity and thus are able to assess the submission
more precisely and, if necessary, point out weak-
nesses and possible improvements.

Is the proposed central platform not a sin-
gle point of failure or otherwise problem-
atic? Experience shows that a limited (and of-
ten short) lifetime is attached to almost all human
creations. This holds even more for digital cre-
ations. As the proposed concept does not create
hard dependencies it can be considered as expand-
able as useful6: Every contributor is free (and en-
couraged to) publish the own contributions else-
where (cf. public repository host in Fig. 3). With
the features of distributed version control this re-
dundancy is easily manageable and by default ev-
ery contributor has at least one local and one
public copy of the whole data under control. Fur-
thermore, the constitutional rules (see Sec. 4.2)
of the platform should prevent that centraliza-
tion implies concentration of influence and the
availability of all the data and all the code under
a Free Software License gives anybody the low-
effort possibility to clone/fork the whole project
– which in turn acts as a feedback in favor of find-
ing compromises.

The most sensitive part would be the URLs
hard-coded in publications, which in the worst
case might become unreachable. But on the other
hand, this could happen with any other web ser-
vice as well, and those are typically not as simple
to replace, do not grant open access to all their
content and do not offer easy identification of con-
tributions with unique entity keys.

Does the proposed solution have scalabil-
ity issues? In this paper we suggest to estab-
lish one repository and a central web service (cur-
rently running on a single virtual machine). This
results in two obvious limitations when many con-
tributions are made: a) The repository might be-
come quite big, which complicates further contri-
butions and other interactions and b) the com-

6Even in the worst case scenario of a sudden irreversible
shutdown after a period of successful operation this would
only destroy (some of) the benefits it added before but not
cause additional problems.

7

Preprint: Only for personal use.

P
re

p
ri

n
t:

 O
n

ly
 f

o
r 

p
er

so
n

al
 u

se
.



putational resources of the current web server
will not suffice if confronted with several requests
in parallel. However, many other platforms and
projects show that such problems are solvable.
This contribution only aims to propose the basic
concept to raise feedback. If scalability becomes
an problem, then there necessarily is a group of
several contributors who can then also provide the
resources to solve that problem.

How can the correctness of the content be
ensured in the long term? The proposed so-
lution offers two layers of validation: First, an
automatic formal verification, i. e. a test whether
submitted code runs without errors and produces
the asserted results. This is required before in-
clusion into the repository. Additionally, content-
related flaws such as implementation bugs or con-
ceptual errors can only be detected by domain
experts – as is the case for classical publications.
However, the Comment entity (cf. Fig. 2), which by
definition is associated with specific other entities,
offers an accountable and traceable communica-
tion channel that can be used to precisely iden-
tify and document issues. In contrast, for classical
publications there is no predefined mechanism to
inform the audience about errors or caveats.

7 Conclusion

In this contribution, we proposed a concept to in-
crease the reproducibility of published results in
system and control theory. To this end, we first
summarized the reproducibility problem, which
affects our research discipline as many others. Af-
ter that we gave a brief overview on relevant exist-
ing technologies and how to combine them. The
core of the contribution is the description of the
repository structure, the overall architecture and
the process scheme for the basic use case (along
with the constitutional rule set). To facilitate
the experimental validation of the proposed con-
cept, a prototype implementation was briefly in-
troduced. Finally, some expected concerns were
discussed. The authors want to close with the
normative claim that reproducibility should be
a key feature of scientific results. Published re-
sults should be as easy as possible to reproduce
by interested individuals or groups, e. g. peer re-
searchers, graduate students or business and in-
dustry. The proposed approach of the active
knowledge repository and much more its current
implementation status is not expected to be the
optimal solution or even close to that. But never-
theless it might be a relevant step in the ongoing
optimization process.

References

[1] J. F. Claerbout and M. Karrenbach. “Elec-
tronic Documents Give Reproducible Re-
search a New Meaning”. In: SEG Tech-
nical Program Expanded Abstracts 1992.
0 vols. SEG Technical Program Expanded
Abstracts. Society of Exploration Geophysi-
cists, 1992, pp. 601–604.

[2] D. L. Donoho et al. “Reproducible Re-
search in Computational Harmonic Analy-
sis”. In: Computing in Science Engineering
11.1 (2009), pp. 8–18.

[3] R. R. Downs et al. “Community Recom-
mendations for Sustainable Scientific Soft-
ware”. In: Journal of Open Research Soft-
ware 3.1 (1 2015), e11.

[4] “Devil in the Details”. In: Nature 470.7334
(7334 2011), pp. 305–306.

[5] Z. Merali. “Computational Science: ...Er-
ror”. In: Nature 467.7317 (2010), pp. 775–
777.

[6] A. Morin et al. “Shining Light into
Black Boxes”. In: Science 336.6078 (2012),
pp. 159–160.

[7] N. P. Rougier et al. “Sustainable Compu-
tational Science: The ReScience Initiative”.
In: PeerJ Computer Science 3 (2017), e142.

[8] J. C. Molloy. “The Open Knowledge Foun-
dation: Open Data Means Better Science”.
In: PLOS Biology 9.12 (2011), e1001195.

[9] O. J. Reichman, M. B. Jones, and M. P.
Schildhauer. “Challenges and Opportuni-
ties of Open Data in Ecology”. In: Science
331.6018 (2011), pp. 703–705.

[10] V. Gewin. “Data Sharing: An Open Mind
on Open Data”. In: Nature 529.7584 (7584
2016), pp. 117–119.

[11] G. Boulton et al. “Science as a Public En-
terprise: The Case for Open Data”. In: The
Lancet 377.9778 (2011), pp. 1633–1635.

[12] B. Hanson, A. Sugden, and B. Alberts.
“Making Data Maximally Available”. In:
Science 331.6018 (2011), pp. 649–649.

[13] V. Stodden. “Trust Your Science?: Open
You Data and Code”. In: AMSTAT news:
the membership magazine of the American
Statistical Association 409 (2011), pp. 21–
22.

[14] D. C. Ince, L. Hatton, and J. Graham-
Cumming. “The Case for Open Computer
Programs”. In: Nature 482.7386 (2012),
pp. 485–488.

8

Preprint: Only for personal use.

P
re

p
ri

n
t:

 O
n

ly
 f

o
r 

p
er

so
n

al
 u

se
.



[15] D. Bailey, J. Borwein, and V. Stodden. “Set
the Default to ”Open””. In: Notices of the
Ams, Accepted March (2013), p. 2013.

[16] S. M. Easterbrook. “Open Code for Open
Science?” In: Nature Geoscience 7.11 (11
2014), pp. 779–781.

[17] L. A. Barba. “Praxis of reproducible com-
putational science”. In: Computing in Sci-
ence & Engineering 21.1 (2019), pp. 73–78.

[18] F. Chirigati et al. “ReproZip: Computa-
tional Reproducibility With Ease”. In: Pro-
ceedings of the 2016 International Confer-
ence on Management of Data. SIGMOD
’16. San Francisco, California, USA: As-
sociation for Computing Machinery, 2016,
pp. 2085–2088.

[19] T. Crick, B. Hall, and S. Ishtiaq. “Repro-
ducibility in Research: Systems, Infrastruc-
ture, Culture”. In: Journal of Open Re-
search Software 5.1 (1 2017), p. 32.

[20] M. Krafczyk et al. “Scientific Tests and
Continuous Integration Strategies to En-
hance Reproducibility in the Scientific Soft-
ware Context”. In: Proceedings of the 2nd
International Workshop on Practical Repro-
ducible Evaluation of Computer Systems. P-
RECS ’19. Phoenix, AZ, USA: Association
for Computing Machinery, 2019, pp. 23–28.

[21] ACKRep Testing Instance. url: http://

testing.ackrep.org/.

[22] R. C. Merkle. “Method of Providing Digi-
tal Signatures”. U.S. pat. 4309569A. Univ
Leland Stanford Junior. 1982.

[23] G. Fraser and J. M. Rojas. “Software Test-
ing”. In: Handbook of Software Engineer-
ing. Ed. by S. Cha, R. N. Taylor, and K.
Kang. Cham: Springer International Pub-
lishing, 2019.

[24] C. M. Keet. An Introduction to Ontology
Engineering. Cape Town: College Publica-
tions, 2018.

[25] P. Borst, H. Akkermans, and J. Top.
“Engineering Ontologies”. In: International
Journal of Human-Computer Studies 46.2
(1997), pp. 365–406.

[26] T. Tudorache. “Employing Ontologies for
an Improved Development Process in Col-
laborative Engineering”. 2006.

[27] S. Fathalla, S. Auer, and C. Lange. “To-
wards the semantic formalization of sci-
ence”. In: Proceedings of the 35th Annual
ACM Symposium on Applied Computing.
2020, pp. 2057–2059.

[28] C. Knoll and R. Heedt. ACKRep Data
Repository on GitHub. url: https : / /

github.com/cknoll/ackrep_data.

9

Preprint: Only for personal use.

P
re

p
ri

n
t:

 O
n

ly
 f

o
r 

p
er

so
n

al
 u

se
.


